A few key terms to help...

Term	Definition
Addition	To combine two or more numbers to make one larger number. For example: 7+12=19
Algorithm	The formal way of setting out operations to work out the answer.
Array	Objects or numbers arranged in rows and columns.
Associative Law	Two or more numbers can be added (or multiplied) in any order. For example: $\quad 6+12+4$ is the same as $4+6+12$ or $12+6+4$
Attribute	A characteristic of an object. Can be size, colour, thickness, length, etc.
Bridging Ten (also referred to as Friends of Ten)	Knowledge of pairs of numbers whose sum is 10 is very valuable and students use this to derive other facts. For example: $5+6$; I know $5+5$, so $5+6$ is one more 14-6; I know $7+7=14$, so $14-7=7$, so $14-6=8$
Classify	Arrange in groups according to attributes.
Commutative Law	When adding (or multiplying) numbers it does not matter what order they are added (or multiplied). For example: $\quad 6+8$ is the same as $8+6$ $17 \times 23 \times 6$ is the same as $6 \times 23 \times 17$
Compensation Strategy	To add (or subtract) a bigger or smaller number then adjust the answer. For example: $\quad 27+83=27+80+3$ 87-39=87-40+1
Counting on and back in ones	Efficient for adding 1, 2 or 3 but increasingly untrustworthy for larger numbers.
Difference	The amount by which one number is bigger or smaller than another number. For example: The difference between 7 and 11 is 4
Digit	One of our numerals $0,1,2,3,4,5,6,7,8$ and 9 .
Distributive Law	$3 \times 8+3 \times 4$ is the same as $3 \times(8+4)$ or 3×12
Divide	To share something into groups
Doubles/Near Doubles	Instant recall and knowledge of same numbers and their total. For example: $3+3=9$ and $5+5=10$ This knowledge is used for other related calculations. For example: $5+6$; I know $5+5$, so $5+6$ is one more 14-6; I know $7+7=14$, so $14-7=7$, so $14-6=8$
Equal	Exactly the same in value or size.
Equation	A mathematical expression where one part is equal to another part. An equal sign ($=$) is used.
Estimate	To make a close guess. It is never an exact answer.
Expanded Notation	Writing a number to show the value of each digit. For example: $\quad 27,691=20,000+7,000+600+90+1$
Factor	A whole number that divides exactly into another number. For example: $12 \div 4=3$, so 4 is a factor of 12 . Other facts of 12 are: $1,2,3,6$, and 12
Fraction	A part of a group of a whole number.
Grouping	Sharing objects into groups that are equal in size.
Jump Strategy	An aid to mental addition or subtraction. Jump by parts of the number. For example: $\begin{aligned} 147+58 & =147+5=+3+5 \\ & =197+3+5 \\ & =200+5 \\ & =205 \end{aligned}$
MAB (blocks)	Blocks used to show place value.
Mental Computation	A mental computation is a calculation performed entirely in the head, with only the answer being written.

Term	Definition
Number Sentence	A sentence written using numerals and signs. Shows a relationship between numbers.
Numerals	A symbol (or group of symbols) that stands for a number. For example: $0,1,2,3,4,5,6,7,8$ and 9 are numerals used in the metric system
Operation	One of the four methods of solving mathematical problems. Addition + Subtraction - Multiplication x Division :-
Ordering	Placing a group in order according to a given instruction, e.g. size, weight, etc.
Order of Operations	Work everything inside brackets first. Then work all the x and \div from left to right. Lastly work all the + and - from left to right.
Pattern	Numbers or objects that are arranged following a rule.
Place Value	Value according to place in a number. For example: 7,382 - the place value of the 3 is the hundreds place (300)
Prime Factor	A factor that is a prime number. For example: The prime factors of 12 are $2 \times 2 \times 3$
Prime Number	A number that has only two factors: itself and one, e.g. 13.
Problem	A question that is answered by using mathematics. Some problems use words and some use only numbers.
Product	The answer when two or more numbers are multiplied.
Remainder	The amount left over when one number cannot be divided exactly by another.
Rule	An instruction that applies to a sequence of numbers or a pattern.
Sequence	A list of numbers or objects which are in a special order.
Skip Counting	To count on or to count back in groups of the same size. For example: $10,15,20,25,30$ and $20,18,16,14,12$
Strategy	A method for working something out.
Subtract	To take one number away from another.
Survey	To collect facts or data about a topic.
Tally Marks	Marks used to help when counting a large number. They are drawn in bundles of five.
Timetable	A table where times are organised for when things happen. Examples are bus timetables, school timetables, etc.
Total	Add all the numbers to find the total.
Trading	Changing a number into smaller or bigger parts. For example:

